POWERS OPPOSED AND INTRINSIC FINKS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispositions, Rules, and Finks

This paper discusses the prospects of a dispositional solution to the Kripke–Wittgenstein rule-following puzzle. Recent attempts to repair dispositional approaches to this puzzle have appealed to the ideas of finks and antidotes – interfering dispositions and conditions – to explain why the rule-following disposition is not always manifested.We argue that this approach fails: agents cannot be s...

متن کامل

Government’s Powers and FTAs: The Effect of Domestic and Foreign Powers on Multilateral Trade

This paper elaborates on the government's powers - both at the domestic level and over foreign countries. The domestic power is the power against domestic lobbies, and the foreign one is the government's international power. To do so, this paper tries to evaluate the effects of these powers   on the formation of free trade agreements (FTAs). The theoretical framework follows an oligopolistic-po...

متن کامل

Comparing Powers and Symbolic Powers of Ideals

We develop tools to study the problem of containment of symbolic powers I(m) in powers I for a homogeneous ideal I in a polynomial ring k[P ] in N + 1 variables over an arbitrary algebraically closed field k. We obtain results on the structure of the set of pairs (r, m) such that I(m) ⊆ I. As corollaries, we show that I2 contains I(3) whenever S is a finite generic set of points in P2 (thereby ...

متن کامل

Symmetric powers and the Satake transform

‎This paper gives several examples of the basic functions‎ ‎introduced in recent years by Ng^o‎. ‎These are mainly‎ ‎conjectures based on computer experiment‎.  

متن کامل

Divisor orientations of powers of paths and powers of cycles

In this paper, we prove that for any positive integers k, n with k ≥ 2, the graph P k n is a divisor graph if and only if n ≤ 2k + 2, where P k n is the k power of the path Pn. For powers of cycles we show that C n is a divisor graph when n ≤ 2k + 2, but is not a divisor graph when n ≥ 2k + bk2 c+ 3, where C k n is the k th power of the cycle Cn. Moreover, for odd n with 2k + 2 < n < 2k + bk2 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Philosophical Quarterly

سال: 2015

ISSN: 0031-8094,1467-9213

DOI: 10.1093/pq/pqu097